2005 Vol. 7, No. 8 1537–1539

Rhodium-Catalyzed Reaction of Thiols with Polychloroalkanes in the Presence of Triethylamine

Ken Tanaka* and Kaori Ajiki

Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan tanaka-k@cc.tuat.ac.jp

Received January 25, 2005

ABSTRACT

RSH
$$\xrightarrow{\text{cat. RhCl(PPh}_3)_3}$$
 $\xrightarrow{\text{SR}}$ $\xrightarrow{\text{SR}}$

RhCl(PPh₃)₃ catalyzes a reaction of thiols with polychloroalkanes in the presence of triethylamine. This reaction serves as a convenient new method to produce formaldehyde dithioacetals, ethylenedithioethers, thioformates, and dithiocarbonic esters under mild conditions.

Many methods for the synthesis of formaldehyde dithioacetals (RSCH₂SR) are known, including the reaction of thiols with diiodomethane, dibromomethane, or dichloromethane under strongly basic conditions¹ and the reaction of thiols with formaldehyde derivatives under acidic conditions.² Demonstrably, the simplest method yet reported is the reaction of thiols with dichloromethane in the presence of *strong organic base* (1,8-diazabicyclo[5,4,0]undec-7-ene, DBU), as reported by Ono et al.³ The present study explored a rhodium-catalyzed reaction of thiols with polychloroalkanes in the presence of *weak organic base* (Et₃N); the reaction allows both simple operation and mild reaction conditions.

In general, thiols are believed to be poisons of transition metal catalysts. However, several recent reports concerning transition-metal-catalyzed reactions of thiols have explained the utility of transition metal catalysts in synthesis of sulfur compounds.^{4–6} Although platinum-catalyzed formaldehyde dithioacetal formation using thiols and CH₂I₂ has been reported,⁷ a catalytic method using thiols and CH₂Cl₂ has

not. Recently, we reported a cationic rhodium(I)/PPh₃-complex-catalyzed dehydrogenation of alkanethiols to disulfides under inert atmosphere.⁸ We found that the formaldehyde dithioacetal was obtained along with the disulfide through reaction of octanethiol with CH₂Cl₂ when dehydro-

^{(1) (}a) Bertaina, B.; Rouvier, E.; Fayn, J.; Cambon, A. *J. Fluorine Chem.* **1994**, *66*, 287. (b) Weissflog, E. *Phosphorus Sulfur* **1981**, *12*, 89. (c) Dou, H. J. M.; Ludwikow, M.; Hassanaly, P.; Kister, J.; Metzger, J. *J. Heterocycl. Chem.* **1980**, *17*, 393. (d) Feher, F.; Vogelbruch, K. *Chem. Ber.* **1958**, *91*, 996.

^{(2) (}a) Aggarwal, V. K.; Davies, I. W.; Franklin, R.; Maddock, J.; Mahon, M. F.; Molloy, K. C. *J. Chem. Soc.*, *Perkin Trans. 1* **1994**, *17*, 2363. (b) Patney, H. K. *Org. Prep. Proc. Int.* **1994**, *26*, 377. (c) Kamada, T.; Gama, Y.; Wasada, N. *Bull. Chem. Soc. Jpn.* **1989**, *62*, 3024.

⁽³⁾ Ono, N.; Miyake, H.; Saito, T.; Kaji, A. Synthesis **1980**, 11, 952.

⁽⁴⁾ Reviews, see: (a) Ogawa, A. In Main Group Metals in Organic Synthesis; Yamamoto, H., Oshima, K., Eds.; Wiley-VCH: Weinheim, 2004; p 813. (b) Ali, B. E., Alper, H. In Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley-Interscience: New York, 2002; Chapter VI.2.1.1.2. (c) Ogawa, A. In Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley-Interscience: New York, 2002; Chapter VII.6. (d) Kuniyasu, H. In Catalytic Heterofunctionalization; Togni, A., Grützmacher, H., Eds.; Wiley-VCH: Weinheim, 2001; p 217. (e) Kuniyasu, H.; Kurosawa, H. Chem. Eur. J. 2002, 8, 2660. (f) Ogawa, A. J. Organomet. Chem. 2000, 611, 463. (g) Kondo, T.; Mitsudo, T. Chem. Rev. 2000, 100, 3205. (h) Han, L.-B.; Tanaka, M. J. Chem. Soc., Chem. Commun. 1999, 395. (i) Beletskaya, I.; Moberg, C. Chem. Rev. 1999, 03, 2435.

⁽⁵⁾ For recent reports concerning transition-metal-catalyzed reactions of thiols, see: (a) Kawakami, J.; Takeda, M.; Kamiya, I.; Sonoda, N. Ogawa, A. Tetrahedron 2003, 59, 6559. (b) Ogawa, A.; Ikeda, T.; Kimura, K.; Hirao, T. J. Am. Chem. Soc. 1999, 121, 5108. (c) Ohtaka, A.; Kuniyasu, H.; Kinomoto, M.; Kurosawa, H. J. Am. Chem. Soc. 2002, 124, 14324. (d) Xiao, W.-J.; Alper, H. J. Org. Chem. 2001, 66, 6229. (e) Xiao, W.-J.; Vasapollo, G.; Alper, H. J. Org. Chem. 2000, 65, 4138. (f) McDonald, F. E.; Burova, S. A.; Huffman, L. G., Jr. Synthesis 2000, 7, 970. (g) Gabriele, B.; Salerno, G.; Fazio, A. Org. Lett. 2000, 2, 351. (h) Ali, B. E.; Tijani, J.; El-Ghanam, A.; Fettouhi, M. Tetrahedron Lett. 2001, 42, 1567. (i) Kondo, T.; Kanda, Y.; Baba, A.; Fukuda, K.; Nakamura, A.; Wada, K.; Morisaki, Y.; Mitsudo, T. J. Am. Chem. Soc. 2002, 124, 12960. (j) Inada, Y. Nishibayashi, Y.; Hidai, M.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 15172. (k) Tsutsumi, K.; Fujimoto, K.; Yabukami, T.; Kawase, T.; Morimoto, T.; Kakiuchi, K. Eur. J. Org. Chem. 2004, 504. (1) Kwong, F. Y.; Buchwald, S. L. *Org. Lett.* **2002**, *4*, 3517. (m) Bates, C. G.; Gujadhur, R. K.; Venkataraman, D. *Org. Lett.* **2002**, *4*, 2803 and references therein.

genation of octanethiol was conducted in CH_2Cl_2 at room temperature in the presence of Et_3N (eq 1).

$$RSH \xrightarrow{\text{[Rh(cod)}_2|\text{BF}_4/2 \text{ PPh}_3/\text{H}_2} \\ Et_3N \ (1.1 \ equiv) \\ \hline \text{CH}_2\text{Cl}_2, \ \text{rt}, 16 \ \text{h} \\ R = \text{CH}_3(\text{CH}_2)_7 \qquad \text{under Ar} \\ \hline \\ 16\% \qquad 33\% \\ \hline \\ (RS)_2 + \left\langle \begin{array}{c} \text{SR} \\ \text{(1)} \\ \text{SR} \\ \text{33\%} \\ \end{array} \right.$$

Table 1 shows various rhodium(I) and iridium(I) catalysts (5% based on thiols) that we examined for their ability to

Table 1. Screening of Catalysts for Reaction of Octanethiol with Dichloromethane a

	5% catalyst	
CH ₃ (CH ₂) ₇ SH	Et ₃ N (1.1 equiv)	S(CH ₂) ₇ CH ₃
	CH ₂ Cl ₂ , rt, 16 h	S(CH ₂) ₇ CH ₃

entry	catalyst	yield $(\%)^b$	
1^c	[Rh(cod) ₂]BF ₄ /2 PPh ₃	33	
2^c	$[Rh(cod)_2]BF_4/2$ n -Bu ₃ P	3	
3^c	$[Rh(cod)_2]BF_4/dppe$	5	
4^c	[Rh(cod) ₂]BF ₄ /dppb	1	
5^c	[Rh(cod) ₂]BF ₄ /dcpe	3	
6^c	$[Rh(cod)_2]BF_4/dppf$	24	
7^c	[Rh(cod) ₂]BF ₄ /Tol-BINAP	8	
8^c	$[Rh(cod)_2]BF_4/XANTPHOS^d$	17	
9^c	[Ir(cod) ₂]BF ₄ /2 PPh ₃	<1	
10^c	[Rh(cod)Cl] ₂ /4 PPh ₃	<1	
11	[Rh(cod) ₂]BF ₄ /2 PPh ₃	<1	
12	RhCl(PPh ₃) ₃	39	
13^e	$RhCl(PPh_3)_3$	81^f	
14	none	0	

 a Rh or Ir catalyst (0.010 mmol), phosphine (0-0.020 mmol), Et₃N (0.22 mmol), thiol (0.20 mmol), and CH₂Cl₂ (1.0 mL) were employed. b Determined by 1 H NMR. c The catalysts were treated with hydrogen (1 atm, rt 0.5 h). d 9,9-Dimethyl-4,5-bis(diphenylphosphino)xanthene. e RhCl(PPh₃)₃ (0.025 mmol), Et₃N (0.5 mL), thiol (0.50 mmol), and CH₂Cl₂ (2.0 mL) were employed. Reaction time: 24 h. f Isolated yield.

facilitate this transformation. Among the phosphine ligands

examined, PPh₃ was the most effective (entries 1–8). The use of [Ir(cod)₂]BF₄ or [Rh(cod)Cl]₂ and the elimination of treatment of the catalyst with hydrogen engendered very low catalytic activity (entries 9–11). The highest catalytic activity was obtained using RhCl(PPh₃)₃ as a catalyst (entry 12). Finally, employing excess amounts of Et₃N furnished the desired methylenedithioether in 81% isolated yield (entry 13). No reaction was observed in the absence of rhodium catalyst (entry 14).

Table 2 shows the rhodium-catalyzed reactions of various thiols with polychloroalkanes, as investigated in polychloroalkane solvents.¹⁰ The reactions of both alkyl and aryl

Table 2. Rhodium-Catalyzed Reaction of Thiols with Polychloroalkanes^a

olychloroalkanes ^a					
entry	thiol	polychloro- alkane	product	yield (%) ^b	
1	CH ₃ (CH ₂) ₇ SH	CH ₂ Cl ₂	S(CH ₂) ₇ CH ₃ S(CH ₂) ₇ CH ₃	81	
2	CH ₃ (CH ₂) ₁₁ SH	CH ₂ Cl ₂	$S(CH_2)_{11}CH_3$ $S(CH_2)_{11}CH_3$	80	
3	PhCH₂SH	CH ₂ Cl ₂	SCH₂Ph SCH₂Ph	82	
4	HO(CH ₂) ₁₁ SH	CH ₂ Cl ₂	$S(CH_2)_{11}OH$ $S(CH_2)_{11}OH$	63	
5	NHBoc MeO ₂ C SH	CH ₂ Cl ₂	$ \begin{pmatrix} NHBoc \\ MeO_2C \end{pmatrix} S - CH_2 $	73	
6	<i>p</i> -ToISH	CH ₂ Cl ₂	$S(p ext{-ToI})$ $S(p ext{-ToI})$	99	
7 ^c	CH ₃ (CH ₂) ₇ SH	CH ₂ CICH ₂ CI	S(CH ₂) ₇ CH ₃ S(CH ₂) ₇ CH ₃	84	
8 ^c	<i>p</i> -ToISH	CH₂CICH₂CI	S(p-ToI) $S(p-ToI)$	87	
9 ^d	CH ₃ (CH ₂) ₁₁ SH	CHCl ₃	$O = \begin{pmatrix} S(CH_2)_{11}CH_3 \\ H \end{pmatrix}$	69	
10 ^d	CH ₃ (CH ₂) ₅ SH	CCI ₄	$O = \begin{pmatrix} S(CH_2)_5CH_3 \\ S(CH_2)_5CH_3 \end{pmatrix}$	61	

 $[^]a$ Reactions were conducted using RhCl(PPh₃)₃ (0.025 mmol), Et₃N (0.5 mL), thiol (0.50 mmol), and polychloroalkane (2.0 mL) at room temperature for 24 h. b Isolated yields based on thiols. c At 80 °C. d RhCl(PPh₃)₃ (0.10 mmol) and polychloroalkane (10 mL) were used.

thiols with CH₂Cl₂ in the presence of 5% RhCl(PPh₃)₃ proceeded at room temperature to furnish the corresponding formaldehyde dithioacetals in good yield (entries 1–6). A hydroxy-substituted alkanethiol and a cysteine derivative can

1538 Org. Lett., Vol. 7, No. 8, 2005

⁽⁶⁾ For recent reports concerning transition-metal-catalyzed synthesis of sulfur compounds, see: (a) Dong, C.; Alper, H. Org. Lett. 2004, 6, 3489. (b) Savarin, C.; Srogl, J.; Liebeskind, L. S. Org. Lett. 2002, 4, 4309. (c) Knapton, D. J.; Meyer, T. Y. Org. Lett. 2004, 6, 687. (d) Hirai, T.; Kuniyasu, H.; Kambe, N. Tetrahedron Lett. 2005, 46, 117. (e) Hirai, T.; Kuniyasu, H.; Kambe, N. Chem. Lett. 2004, 33, 1148. (f) Sugoh, K.; Kuniyasu, H.; Sugae, T.; Ohtaka, A.; Takai, Y.; Tanaka, A.; Machino, C.; Kambe, N.; Kurosawa, H. J. Am. Chem. Soc. 2001, 123, 5108. (g) Kuniyasu, H.; Ohtaka, A.; Nakazono, T.; Kinomoto, M.; Kurosawa, H. J. Am. Chem. Soc. 2000, 122, 2375. (h) Arisawa, M.; Yamaguchi, M. J. Am. Chem. Soc. 2003, 125, 6624. (i) Arisawa, M.; Suwa, A.; Fujimoto, K.; Yamaguchi, M. Adv. Synth. Catal. 2003, 345, 560. (j) Arisawa, M.; Yamaguchi, M. Org. Lett. 2001, 3, 763. (k) Kondo, T.; Baba, A.; Nishi, Y.; Mitsudo, T. Tetrahedron Lett. **2004**, *45*, 1469. (l) Hua, R.; Takeda, H.; Onozawa, S.; Abe, Y.; Tanaka, M. *J. Am. Chem. Soc.* **2001**, *123*, 2899. (m) Taniguchi, N. *J. Org. Chem.* 2004, 69, 6904. (n) Taniguchi, N.; Onami, T. J. Org. Chem. 2004, 69, 915. (o) Ananikov, V. P.; Beletskaya, I. P. Org. Biomol. Chem. 2004, 2, 284. (p) Tanaka, K.; Ajiki, K. Tetrahedron Lett. 2004, 45, 5677 and references

^{(7) (}a) Page, P. C. B.; Klair, S. S.; Brown, M. P.; Smith, C. S.; Maginn, S. J.; Mulley, S. *Tetrahedron* **1992**, *48*, 5933. (b) Page, P. C. B.; Klair, S. S.; Brown, M. P.; Harding, M. M.; Smith, C. S.; Maginn, S. J.; Mulley, S. *Tetrahedron Lett.* **1988**, *29*, 4477.

⁽⁸⁾ Tanaka, K.; Ajiki, K. Tetrahedron Lett. **2004**, 45, 25.

⁽⁹⁾ Not only tertiary amines but also secondary and primary amines (n-Bu₂NH and n-BuNH₂) can be used for this reaction, although the reaction rate is low.

⁽¹⁰⁾ In all entries, <5% conversions were observed in the absence of rhodium catalyst.

be used (entries 4 and 5).¹¹ The reaction of a vicinal dichloride (CH₂ClCH₂Cl) proceeded at 80 °C to furnish the corresponding ethylenedithioethers in good yield (entries 7 and 8). Importantly, although high catalyst loading and diluted condition were required, the reaction of CHCl₃ and CCl₄ also proceeded at room temperature to give a thioformate and a dithiocarbonic ester, respectively, presumably through hydrolysis of corresponding polythiomethanes by silica gel chromatography (entries 9 and 10). The reaction of CHCl₃ and CCl₄ serves as a convenient new method for preparation of a thioformate and a dithiocarbonic ester starting from a thiol.

Next, we investigated the rhodium-catalyzed reaction of thiols with alkyl halides. The reaction proceeded cleanly in Et_3N without using excess alkylating reagents when a reactive primary alkyl chloride (benzyl chloride, eq 2) or a primary alkyl bromide (dodecyl bromide, eq 3) was used as an alkylating reagent. No reaction was observed in the absence of rhodium catalyst.

The reaction of dodecanethiol with CDCl₃ was investigated to gain mechanistic insight into this reaction (eq 4). Deuterium of CDCl₃ was quantitatively incorporated into the formyl group. Furthermore, the reaction of benzyl mercaptan with (*R*)-(1-chloroethyl)benzene (78% ee) furnished the corresponding sulfide with complete inversion of configuration (78% ee, eq 5).

Scheme 1 depicts a plausible mechanism of this reaction. We believe that the rhodium(I) catalyst oxidatively inserts

$$\begin{array}{c} \text{CH}_{3}(\text{CH}_{2})_{11}\text{SH} & \begin{array}{c} 20\% \text{ RhCl}(\text{PPh}_{3})_{3} & \text{O} \\ \hline \\ \text{CDCl}_{3}, \text{ Et}_{3}\text{N} & \text{H}_{3}\text{C}(\text{H}_{2}\text{C})_{11}\text{S} & \text{D} \\ \hline \\ \text{PhCH}_{2}\text{SH} & + \begin{array}{c} \text{Cl} \\ \text{Ph} & \text{Me} \end{array} & \begin{array}{c} 5\% \text{ RhCl}(\text{PPh}_{3})_{3} \\ \hline \\ \text{Et}_{3}\text{N}, 80 \, ^{\circ}\text{C}, 48 \, \text{h} \end{array} & \begin{array}{c} \text{S} & \text{Ph} \\ \text{Ph} & \text{Me} \end{array} & \begin{array}{c} \text{(5)} \\ \text{61\%, 78\% ee} \end{array} \end{array}$$

into the thiol S-H bond, affording a rhodium(III) complex **A**. Elimination of HX with Et_3N furnishes rhodium(I) thiolate **B**, which reacted with alkyl halides in an S_N2 fashion, thereby furnishing sulfides and regenerating the rhodium(I) catalyst.

(0% without Rh)

In conclusion, we have established that RhCl(PPh₃)₃ catalyzes a reaction of thiols with polychloroalkanes in the presence of triethylamine. This reaction serves as a convenient new method to produce formaldehyde dithioacetals, ethylenedithioethers, thioformates, and dithiocarbonic esters under mild conditions.

Acknowledgment. This research was supported by Banyu Pharmaceutical Company Award in Synthetic Organic Chemistry, Japan. We thank Dr. M. Hirano for elemental analysis.

Supporting Information Available: Experimental procedures and compound characterization data. This material is available free of charge via the Internet at http://pubs.acs.org. OL0501673

Org. Lett., Vol. 7, No. 8, 2005

⁽¹¹⁾ For synthesis of methylenedithioethers from cysteine derivatives using tetrabutylammonium fluoride hydrate, see: Ueki, M.; Ikeo, T.; Hokari, K.; Nakamura, K.; Saeki, A.; Komatsu, H. *Bull. Chem. Soc. Jpn.* **1999**, *72*, 829